Evaluation of Phenotypic Variations in the Antibiotics Sensitivity of Escherichia Coli by Repeated Exposure

Main Article Content

Andry Maharo Andrianarivelo
Christian Emmanuel Mahavy
Marson Raherimandimby
Tsiry Rasamiravaka


Enterobacteriaceae, in particular Escherichia coli, are habitual residents of the gastrointestinal tract, capable of causing a large number of infections. The MIC varies according to the bacterial strains and the antibiotics used, hence the need to carry out antibiotic sensitivity tests. The objective of this study is to evaluate the behavior of Escherichia coli after repeated exposure to the same antibiotic to demonstrate a possible correlation between excessive intake of antibiotics and bacterial resistance.

A prospective and descriptive study was carried out in the Laboratory of Microbiology of Fundamental and Applied Biochemistry (Faculty of Sciences Antananarivo) during the month of November 2019. The strains studied were the reference strain Escherichia coli ATCC 25922 provided by the Laboratory and two clinical strains from the Microbiology Laboratory of the Joseph Ravoahangy Andrianavalona University Hospital Center (CHU JRA) Antananarivo. Repeated exposure to Tobramycin and Ofloxacin of these strains were performed.

The results of our study showed that most E. coli is exposed to the antibiotic, the more it develops resistance. The evolution of E. coli's sensitivity is different in the presence of Tobramycin with MICs up to 4 times the starting value while in the presence of Ofloxacin, the MIC increases to 125 times the initial value. This difference may be due to the different target of the antibiotic which causes the bacteria to develop variable mechanisms to escape it.

Key words: E. coli - MIC - antibiotics - repeated exposure


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
Andrianarivelo, A. M., Mahavy, C. E., Raherimandimby, M., & Rasamiravaka, T. (2021). Evaluation of Phenotypic Variations in the Antibiotics Sensitivity of Escherichia Coli by Repeated Exposure. International Journal of Clinical and Biomedical Research, 7(1), 6–11. https://doi.org/10.31878/ijcbr.2021.71.02


1- Mainil J. Facteurs de virulence et propriétés spécifiques des souches invasives d’Escherichia coli : Les Adhésines et facteurs de colonisation. Ann Méd Vét. 2003; 147: 105–26.
2- Derderian SL. Alexander fleming’s miraculous discovery of penicillin. Rivier academic journal. 2007; 3 (2): 1–5.
3- Gould IM. A review of the role of Antibiotic policies in the control of Antibiotic resistance. Journal of Antimicrobial Chemotherapy. 1999; 43: 459–465.
4- Harbarth S, Samore MH. Antimicrobial resistance determinants and future control. Emerging Infectious Diseases. 2005 ; 11: 794–801.
5- Courvalin P. La résistance des bactéries aux antibiotiques : combinaisons de mécanismes biochimiques et génétiques. 2007; p25-28.
6- Moore RD, Lietman PS, and Smith CR. Clinical response to Aminoglycoside therapy: Importance of the ratio of peak concentration to Minimal Inhibitory Concentration. J Infect Dis. 1987 ; 155 (1) : 93-9
7- CA-SFM. Comité de l’Antibiogramme de La Société Française de Microbiologie, Recommandations 2019. 2019
8- Konan FK, Guessennd NK, Oussou KR, Bahi C, Coulibaly A, and Djaman AJ. Effet antibactérien de l’extrait aqueux de l'écorce de Terminalia Glaucescens Planch Ex Benth (Combretaceae) sur la croissance in vitro des Entérobactéries productrices de Bêta-Lactamases à Spectre Élargi (EBLSE). 2014; 8 (June): 1192–1201.
9- Sati P, Praveen D, Bhatt ID, and Pandey A. Journal of traditional and complementary medicine: Ginkgo biloba Flavonoid Glycosides in antimicrobial perspective with reference to extraction method. Journal of Traditional Chinese Medical Sciences. 2019; 9 (1): 15–23.
10- Archambaud M. Méthodes d’évaluation de l’activité des antibiotiques. Laboratoire Bactériologie-Hygiène CHU Rangueil Toulouse. 2009. https://docplayer.fr/29004935-Methodes-d-evaluation-de-l-activite-des-antibiotiques-in-vitro.html
11- Coutinho HDM, Costa GM, and Lima EO. Enhancement of the Antibiotic activity against a Multiresistant Escherichia coli by Mentha Arvensis L. and Chlorpromazine. 2008; 54 (4) : 328–30.
12-Christopher G, Nicola L, Andrew J. Variable effects of exposure to formulated microbicides on antibiotic susceptibility in Firmicutes and Proteobacteria. 2016; 82: 3591–98
13-Brilt MR, Garibaldi RA, Wilfert JN, And Smith CB. In vitro activity of Tobramycin and Gentamicin. 1972; 2 (3): 236–41.
14- Dhondikubeer R, Smritilekha B, Zhanel GG, and Schweizer F. Antibacterial activity of Amphiphilic Tobramycin. J Antibiot (Tokyo). 2012; 65 (10): 495-8
15- Wright GD. 2003. Mechanisms of resistance to antibiotics. 2012; 7: 563–569.
16- Menard R, Molinas C, Arthur M. Overproduction of 3'-Aminoglycoside Phosphotransferase Type I confers resistance to Tobramycin in Escherichia coli. J Antimicrobial agents and chemotherapy. 1993; 37: 78-83
17- Zhang T, Wang CG., Jiang GE, and Zhong XH. Molecular epidemiological survey on Aminoglycoside antibiotics-resistant genotype and phenotype of avian Escherichia Coli in North China. 2007; 2482–86.
18-Courvalin P, Leqclercq R et Bingen E. Antibiogramme. 2ème édition. Paris. 2006
19-Georgopapadakou NH. Antibiotic resistance in Enterobacteria. In Bacterial Resistance to Antimicriobials, Edition Taylor, New-York. 2008; 343–62.
20-Rosenberg EY, and Ma D. AcrD of Escherichia Coli is an Aminoglycoside efflux pump. 2000; 182 (6): 1754–56.
21-Aires JR, and Nikaido H. Aminoglycosides are captured from both Periplasm and Cytoplasm by the AcrD multidrug Efflux Transporter of Escherichia Coli. 2005; 187 (6): p29
22-Fernández L, and Robert EWH. Adaptive and mutational resistance: Role of Porins and Efflux Pumps in drug resistance. Clinical Microbiology Reviews. 2012 ; 25 (4): 661-75
23- Neu HC, and Chin NX. In Vitro activity of S-Ofloxacin. Antimicrobial agents and Chemotherapy. 1989; 33 (7): 1105–7
24- Crumplin GC, Odell M. Development of Resistance to Ofloxacin. Drugs. 1987; 34: 1–8
25- Mammer H, Van De Loo M, Poirel L, Martinez-martinez L and Nordmann P. Emergence of plasmid-mediated Quinolone resistance in Escherichia coli in Europe. Antimicrobial agents and Chemotherapy. 2005; 49 (1): 71–76
26- Azargun R, Hossein M, Barhaghi S, Oskouee MA, Sadeghi V, Memar MY, and Ghotaslou R. Frequency of DNA Gyrase and Topoisomerase IV mutations and plasmid-mediated Quinolone resistance genes among Escherichia Coli and Klebsiella Pneumoniae isolated from Urinary Tract Infections In Journal of Global Antimicrobial Resistance. 2019; 17: 39–43.
27- Cattoir V, Lesprit P, Lascols C, Denamur E, Legrand P, Soussy CJ, Cambau E. In vivo selection during Ofloxacin therapy of Escherichia coli with combined Topoisomerase mutations that confer high resistance to Ofloxacin but susceptibility to Nalidixic Acid. Paris. 2006; 1054–57.
28-Hamed SM, Walid FE, Hadir AE, Mai MH, Ashour MS, and Aboshanab KMA. Multiple mechanisms contributing to Ciprofloxacin resistance among Gram Negative bacteria causing infections to cancer patients. Scientific Reports. 2018: 1–10.
29-Rossolini MG, Arena F, and Tommaso G. Mechanisms of antibacterial resistance. Infectious Diseases. Fourth Edition. Elsevier Ltd. 2017; 6285-8.
30-Cullen ME, Wyke AW, Kuroda R, and Fisher LM. Cloning and Characterization of a DNA Gyrase A gene from Escherichia coli that confers clinical resistance to 4-Quinolones. 1989; 33 (6): 886–94.
31- Sharma A, Gupta VK, and Pathania R. Efflux Pump inhibitors for bacterial pathogens: from bench to bedside. Indian Journal of Medical Research. 2019; 149 (2): 129–45.

Most read articles by the same author(s)