EFFECT OF CIGARETTE SMOKING ON PEAK EXPIRATORY FLOW RATE: A SHORT REVIEW
Sunita Nighute1, Kiran Buge2, Siva Kumar3

ABSTRACT
Tobacco smoking in India has been increasing alarmingly. Smoking is a known risk factor for chronic obstructive pulmonary disease (COPD), cardiovascular diseases and certain cancers, especially, the lung cancer. Carbon monoxide from the smoke and nicotine both put a strain on the heart by making it work faster. Peak expiratory flow rate (PEFR) is a simple index of pulmonary function and can be used in researchers, clinical practices and even under field conditions to assess the status of large airways. PEFR is decreased in cigarette smokers compared to non-smokers and the magnitude of decline is higher in elderly individuals.

KEYWORDS: Peak expiratory flow rate; Smokers; Wright’s peak flow meter.

INTRODUCTION
Smoking can cause various pathophysiological effects. It has been identified as the most important risk factor in Chronic Obstructive Pulmonary Disease (COPD)[1]. It significantly increases progressive deterioration of lung function. Pulmonary Function Test is a test to examine functional capacity of lungs and respiratory system. The common parameters measured in pulmonary function test are Peak Expiratory Flow Rate (PEFR) and Maximum Voluntary Ventilation (MVV).

Tobacco smoking is a major risk factor for cardiovascular disease, chronic obstructive pulmonary disease and some cancers and the morbidity and mortality with tobacco use is entirely preventable [2]. Smoking harms nearly every organ in the body, causing many diseases and reducing health in general. Further, a quarter of smokers develops chronic obstructive pulmonary disease [3] and is the fourth commonest cause of death worldwide [4]. COPD is characterized by airflow limitation that is not fully reversible [5, 6]. Airflow limitation may be due to inflammation [5, 7] or due to increase in the thickness of the wall [8]. PEFR is a useful parameter to monitor airway obstruction, assess its severity and variation and evaluate the effects of treatment [9]. Earlier studies have reported that the PEFR is an effort dependent parameter emerging from large airways [10-12] and it does not detect small airways obstruction [13]. Further, there are inconsistent findings which showed that smoking affects medium and large airways [14, 15]. Others have reported that smoking affects both small and large airways [16, 17]. Several studies have reported that PEFR was significantly lower in smokers than in non-smokers [18-22] and some studies found maximum reduction in PEFR was in bidi smokers than cigarette smokers [23]. One possible reason for the decrease in PEFR could be inflammation which is common and constant pathological finding in cigarette smokers [24]. It has significant deleterious effects on respiratory tract. Smokers even if they are symptom free, have lower values of PEFR than non-smokers. The diminution of PEFR runs more or less in parallel with the duration of smoking. Beedi smoking affects respiratory tract has significant deleterious effects on respiratory tract. Smokers even if they are symptom free, have lower values of PEFR than non-smokers. Early detection of airflow obstruction and smoking cessation may result in significant health gain.
The highest of three readings is used as the recorded value of the Peak Expiratory Flow Rate. It may be plotted out on graph paper charts together with a record of symptoms or using peak flow charting software. This allows patients to self-monitor and pass information back to their doctor or nurse\(^{25}\).

Peak flow readings are often classified into 3 zones of measurement according to the American Lung Association; green, yellow, and red. Doctors and health practitioners can develop an asthma management plan based on the green-yellow-red zones\(^{26}\).

CONCLUSION

PEFR is decreased in cigarette smokers compared to non-smokers and the magnitude of decline is higher in elderly individuals. Smokers even if they are symptom free, have lower values of PEFR than nonsmokers.

Conflict of interest: Nil

Funding : Nil

REFERENCES

1. Andrew Lumb, Nunn JF. Nunn’s applied respiratory physiology. Elsevier Publishers. 4th edition;378-83

9. Quanjer PH, Lebowitz MD, Gregg I. Peak expiratory flow: conclusions and recommendations of a Working
Sunita, et al. Effect of cigarette smoking on peak expiratory flow rate

